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Abstract We study the complex ac admittance tensor (ac

conductivity and dielectric constant) of anisotropic con-

ductor–insulator composite materials, based on anisotropic

two-dimensional RC-networks consisting of randomly

placed conductors and capacitors with different conductor

existence (bond occupation) probabilities in two directions.

We calculate numerically each component of the complex

ac admittance tensor by applying a transfer matrix method

and reveal the effect of the anisotropy of the bond occu-

pation probability on the frequency characteristics of the ac

admittance tensor. It is found that the dual relation holds

for each diagonal component of the complex admittance

tensor of the anisotropic two-dimensional RC-network. For

the effective conductance in the metallic region, the

anisotropy depends not only on the anisotropy of the bond

occupation probability, but also on the frequency x. We

derive the analytical relation between the anisotropy of the

conductance and the anisotropy of the bond occupation

probability, at both the dc limit and x RC = 1. The cal-

culated results on the ac admittance are compared with the

effective medium theory and how the accuracy of the

theory is related with the microscopic current path is

clarified.

Introduction

Recently, conductor–insulator composite materials such

as metal-filled epoxy adhesives have been increasingly

expected as a promising candidate instead of solder

in microelectronics field [1]. Here, the high frequency

ac conductive and dielectric properties are essentially

important.

With respect to ac conductivity and dielectric constant

of a conductor–insulator composite, experimental studies

have been mainly performed near the percolation threshold

from scientific interests [2–4]. Ac-conductivity measure-

ment in a wide frequency range of 5 Hz–13 MHz has been

performed in a metallic region for La2NiO4?d with quasi-

two-dimensional structure [5]. The observed ac conduc-

tivity is constant at low frequencies, and increases by the

power law and saturates at high frequencies. Recently, ac

and dc percolative conductivity has been measured on

magnetite–cellulose acetate composites in a wide range of

volume fraction from a metallic region to an insulating

region [6]. The observed ac conductivity in a metallic

region is constant at low frequencies and increases by the

power law in a frequency range of 10-2 to 3 9 106 Hz,

while it is decreased by the power law with decreasing

frequency in an insulating region.

The properties of isotropic conductor–insulator com-

posites have been extensively studied by both experi-

mental and theoretical physics for many years [7].

Effective medium theory [8, 9] was used to analyze the

data, but since the 1970s, one of the main theoretical

models has involved percolation theory and the concept of

scaling [10–12]. Some powerful numerical methods to

obtain the critical exponent near the percolation threshold

have been developed, such as a transfer matrix approach

[13], a position-space renormalization group [14], and

efficient Monte Carlo algorithm [15]. Percolation theory

predicts a universal behavior of the electrical conductivity

and the dielectric properties, which does not depend on

details of the system but the spatial dimension. Actually,
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behavior of percolation clusters was directly observed in

sintered mixture of niobium and alumina with an image

processing system [16]. Kinetic roughening of charge

spreading has also been detected in a two-dimensional

silicon nano-crystal network by electrostatic force

microscopy [17].

Recently, on the other hand, fine particles with a high

aspect ratio have been expected as the filler to reduce the

percolation threshold. A polysterene–graphene composite

exhibits a percolation threshold of only *0.1 volume

percent for the room temperature electrical conductivity

[18]. A graphene has two-dimensional structure and the

observed conductivity exhibits slight anisotropy. Carbon

nanotubes filled polymetric materials have also been

expected as conducting composite material with the low

percolation threshold [19, 20]. The electrical conductivity

depends not only on the concentration, but also on the

alignment and either dependence exhibits the critical

power-law behavior [20]. In the aligned case, strong

anisotropy on the dc conductance has been observed [20].

However, the interrelation between the geometrical

anisotropy of the composite material and the anisotropy of

the conductance has not been sufficiently clarified.

With respect to the anisotropy of dc conductance, a two-

dimensional square random resistor network has been

studied with two models; an anisotropic resistor model

with anisotropic conductance in two directions and an

anisotropic percolation model with anisotropic bond

occupation probabilities in two directions. In the former

anisotropic resistor model, it is pointed out that the

anisotropy in the macroscopic conductance vanishes in the

vicinity of the percolation threshold [21, 22]. Actually,

metal islands with controllable anisotropy was generated

on an insulating substrate photolithographically from laser

speckle pattern and the percolation conductance in two-

dimensional conductor–insulator networks have been mea-

sured [23]. The observed anisotropy of the dc-conductance

as a function of area fraction for metal was explained on

the basis of the former model. In the latter anisotropic

percolation model, on the contrary, it is shown that it has

the same universality class as the isotropic percolation [13,

24] and the anisotropy of the macroscopic conductance

is kept to be constant near the percolation threshold. On

the other hand, Shklovskii pointed out that the topologi-

cal anisotropy of the shape of dielectric regions in a metal

with isotropic conductivity has anisotropic conductance

near the percolation threshold [22]. Concerning to the

anisotropy of the ac conductance of the anisotropic com-

posite materials, however, it has not been studied yet as the

authors know.

In our previous article [25], we studied the frequency

characteristics of ac conductivity and dielectric constant of

an isotropic two-dimensional random RC-network. The

calculated frequency dependence succeeded in explaining

the observed results [5, 6]. The purpose of this article is to

clarify the frequency characteristics of the complex

admittance tensor of an ‘‘anisotropic’’ two-dimensional

random RC-network and to reveal the interrelation between

the geometrical anisotropy and the anisotropy of the ac

admittance. We calculate each component of the ac com-

plex admittance tensor by applying a transfer matrix

method [13]. We derive some exact analytical relations for

each component of the complex admittance tensor. Finally,

we clarify the range of applicability and limitation of the

effective medium theory.

Model and analytical results

We adopt an anisotropic percolation model, which is an

anisotropic two-dimensional square network consisting of

two kinds of randomly placed conductors with scalar con-

ductance, g1 and g2. The element g1 = 1/R is purely resis-

tive and occurs with probabilities pv and ph in the vertical

and the horizontal directions of the network, respectively.

The second element is purely capacitive, g2 = jxC, and

occurs with probabilities (1 - pv) and (1 - ph) in the ver-

tical and the horizontal directions. Here, j is an imaginary

unit and x is the angular frequency. The problem is to

compute the complex admittance tensor per square of a

large RC-network as a function of angular frequency x. If

R-1 is chosen as a unit of the admittance, g1 = 1 with

probabilities pv and ph, and g2 = jRCx with probabilities

(1 - pv) and (1 - ph), in the vertical and the horizontal

directions, respectively. Hence, the complex admittance

tensor Y per square of a very large homogeneous network

should be characterized by only three dimensionless

parameters, pv, ph, and RCx, i.e., the complex admittance

tensor per square can be expressed as Y(pv, ph, RCx) in a

unit of 1/R. It should be mentioned that the horizontal

diagonal component Yh(pv, ph, RCx) can be calculated from

the vertical diagonal component Yv(pv, ph, RCx) as, Yh(pv,

ph, RCx) = Yv(ph, pv, RCx). Thus, the anisotropy of the

complex admittance, Yv(pv, ph, RCx)/Yh(pv, ph, RCx), can

be calculated from the two vertical components, Yv(pv, ph,

RCx) and Yv(ph, pv, RCx). From the real and the imaginary

part of the vertical complex admittance, the vertical com-

ponent of the effective conductance rv
eff per square and the

vertical component of the effective capacitance Cv
eff per

square (dielectric constant) can be obtained.

Yvðpv;ph;RCxÞ ¼ reff
v ðpv;ph;RCxÞþ jxCeff

v ðpv;ph;RCxÞ
ð1Þ

The following crossed relation is satisfied between

Yv(pv, ph, RCx) and Yv(1 - pv, 1 - ph, (RCx)-1) in
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geometrically equivalent condition for R and C regions in

an any-dimensional RC-network [25].

Y�v 1� pv; 1� ph;
1

RCx

� �
¼ � j

RCx
Yvðpv; ph;RCxÞ ð2Þ

From the above crossed relation, the next relation can be

derived between the effective conductance and the

effective capacitance.

reff
v 1� pv; 1� ph;

1

RCx

� �
R ¼ Ceff

v ðpv; ph;RCxÞ=C ð3Þ

On the other hand, for a two-dimensional isotropic

homogeneous two-phase system, it is well known that

the dual relation, Y(c)Y(1 - c) = g1g2, holds between the

scalar macroscopic complex admittances Y for complemen-

tary concentrations c and (1 - c), in geometrically

equivalent condition [26]. Here, c is the concentration

of the phase 1 of the two-phase system and g1 and g2

are the scalar conductance of the phases 1 and 2,

respectively. We found that the dual relation can be

extended for the complex admittance tensor of the aniso-

tropic composite materials in geometrically equiv-

alent condition. Indeed, it can be proved that the dual

relation holds in the topologically anisotropic case for each

diagonal component of the 2 9 2 macroscopic complex

admittance tensor.

YvðcÞYvð1� cÞ ¼ g1g2;

YhðcÞYhð1� cÞ ¼ g1g2:
ð4Þ

The proof can be performed by following the similar

procedure to that for the isotropic system [26], with a

macroscopic 2 9 2 diagonal admittance tensor instead of a

scalar macroscopic admittance. For the admittance per

square of the anisotropic two-dimensional RC-network, the

geometrically equivalent condition is satisfied and the dual

relation holds for each component.

Yvðpv; ph;RCxÞYvð1� pv; 1� ph;RCxÞ ¼ jRCx;

Yhðpv; ph;RCxÞYhð1� pv; 1� ph;RCxÞ ¼ jRCx
ð5Þ

It should be mentioned that the dual relation does not hold

for an anisotropic resistor model.

From Eqs. 2 and 5, the following reciprocal relations

between the vertical components of the complex admit-

tance tensor can be derived as well as the isotropic case

[25].

Yvðpv; ph;RCxÞY�v pv; ph;
1

RCx

� �
¼ 1 ð6Þ

The vertical complex admittance can be written as Yv ¼
jYvj expðjUvÞ: From the reciprocal relation Eq. 6, the

following relations between the vertical complex admit-

tances are obtained as well as the isotropic case [25].

jYvðpv; ph;RCxÞj ¼ Yv pv; ph;
1

RCx

� �����
����
�1

/vðpv; ph;RCxÞ ¼ /v pv; ph;
1

RCx

� �

jYvðpv; ph; 1Þj ¼ 1

ð7Þ

On the other hand, the following relations between the

vertical components of the complex admittance tensors for

complementary concentrations are derived from the dual

relation Eq. 5, as well as the isotropic case [25].

jYvðpv; ph;RCxÞjjYvð1� pv; 1� ph;RCxÞj ¼ RCx

/vðpv; ph;RCxÞ þ /vð1� pv; 1� ph;RCxÞ ¼ p
2

ð8Þ

For the anisotropic two-dimensional RC-networks, it is also

known that the percolation threshold of the average bond

occupation probability p = (pv ? ph)/2 is pcr = 0.5 [13].

In the meanwhile, the vertical component Yv of the

complex admittance tensor per square of an anisotropic

two-dimensional RC-network at pv, ph, and RCx can be

calculated approximately in the effective medium theory

[27] as a solution of the following set of equations.

Yv ¼
pvðjxRC þ SvÞ þ ð1� pvÞjxRCð1þ SvÞ

pvðjxRC þ SvÞ þ ð1� pvÞð1þ SvÞ
;

Sv ¼ R�1
v � Yv

Rv ¼
1

p2

Z p

0

dk1

Z p

0

dk2ð1� cos k1Þ

½Yvð1� cos k1Þ þ Yhð1� cos k2Þ��1:

ð9Þ

The similar set of equations can be written for the hori-

zontal component Yh. Equation 9 gives not only the exact

percolation threshold of pcr = 0.5, but also satisfies both

the crossed relation of Eq. 2 and the dual relation of Eq. 5.

Numerical results

In the numerical calculation, we explore only the vertical

component of the complex ac admittance tensor in a wide

range of parameters, pv, ph, and RCx, since the horizontal

component can be obtained by exchanging pv and ph. We

use the exact analytical relations, Eqs. 7, 8, in order to

check the calculation accuracy.

We compute the vertical component Yv of the complex

admittance per square of the anisotropic RC-network, using

a transfer matrix method [13]. In the numerical studies, the

network has a finite number of sites. Sizes of the square

networks are set 200 9 200 and 500 9 500 at p = 0.5 and

p = 0.5, respectively, and the ensemble average was taken

over 100 samples. All the calculated data present the

average value with the standard deviation. We set the unit

of the effective conductance rv
eff as 1/R and that of the

J Mater Sci (2010) 45:2843–2851 2845

123



effective capacitance as C. We set also the unit of the

angular frequency x as 1/RC.

First, we show the dc effective conductance rv
eff as a

function of resistors existence (bond occupation) proba-

bilities, pv and ph. Two domains, insulating and metallic,

of resistors existence probability, p = (pv ? ph)/2, are

apparent in Fig. 1a with the percolation threshold of

pcr = 0.5. The vertical dc effective conductance is very

sensitive also to the anisotropy of the bond occupation

probability and it becomes larger as the ratio of pv to ph

increases at a fixed value of p. In the vicinity of the per-

colation threshold, however, the vertical dc conductance

follows the power law, rv
eff�(p - 0.5)t, with the same

critical exponent of t = 1.28 [13, 24] irrespective of the

anisotropy of the bond occupation probability, as seen

in Fig. 1b. The anisotropy of dc conductance remains

in the vicinity of the percolation threshold just as the

topologically anisotropic system [22]. In Fig. 1a, the

numerical results of the effective medium theory are also

plotted by lines. It is seen that the effective medium theory

always overestimates the dc effective conductance and the

difference from the transfer matrix result becomes larger in

the vicinity of the percolation threshold. As for the critical

exponent, the effective medium theory gives t = 1.0 and

cannot reproduce the correct critical exponent of t = 1.28.

Second, we will discuss the anisotropy of the dc con-

ductance. In Fig. 2, we plot the ratio c of the vertical

component to the horizontal one, c = rv
eff(pv, ph, 0)/

rh
eff(pv, ph, 0) as a function of pv/ph. The conductance ratio

c takes unity in the isotropic case and is suppressed less

than pv/ph in the anisotropic case of pv/ph \ 1. This means

that the anisotropy of the effective conductance is much

more enhanced than the geometrical anisotropy of the bond

occupation probability. In Fig. 3, we plot the vertical

component of the conductance in the extreme case of

ph = 1, rv
eff(pv, 1, 0), as a function of pv. The effective

conductance exhibits the power-law behavior with an

exponent of 2.13 near the percolation threshold at pv = 0.

This is caused by the tortuous microscopic current path in

the percolation. As for the horizontal component, on the

other hand, rh
eff(pv, 1, 0) = 1, since the microscopic cur-

rent path is straight parallel to the horizontal direction.

Hence, the conductance ratio c in this extreme case is equal

to c = rv
eff(pv, 1, 0), and it is also much less than pv for

10
-4

10
-3

10-2

10
-1

10
0

10
1

 0.01  0.1 0.02  0.05

P−0.5

dc
 C

on
du

ct
an

ce
 (

1/
R

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4  0.6  0.7  0.8  0.9  1

Resistors Existence Probability P 

(a)

dc
 C

on
du

ct
an

ce
 (

1/
R

)

1 / 9
2 / 8
3 / 7
4 / 6
5 / 5
6 / 4
7 / 3

9 / 1
8 / 2

(b)

 0.5

PV / PH

Fig. 1 The vertical dc conductance versus resistors existence prob-

ability p for several values of pv/ph. a The plot in a linear scale with

the result of the effective medium theory (a solid line for the

anisotropic case and a broken line for the isotropic case), and b the

plot in a logarithmic scale with the predicted power law reff �
(p -0.5)1.28 (a solid line for the anisotropic case and a broken line for

the isotropic case). The end of each line in (a) corresponds to pv = 1
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Fig. 2 Anisotropy of the effective conductance, rv
eff(pv, ph, xRC)/
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eff(pv, ph, xRC), versus pv/ph, for the dc effective conductance at

p = 0.53, 0.6, and 0.7, and for the ac effective conductance at

xRC = 1 for p = 0.4, 0.5, and 0.6. The relation of Eq. 10 for the

anisotropy of the ac conductance at xRC = 1 and the relation of

Eq. 11 for that of the dc conductance are plotted by solid lines and a

broken line, respectively
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pv� 1. Figure 4 shows the map of the current intensity

distribution [28] of both the vertical current and the lateral

current at p = 0.53 for the case of pv = 0.212 and ph

= 0.848. The vertical current path in Fig. 4a is very tor-

tuous, but the lateral current path in Fig. 4b is rather

straight. This difference between tortuosities of current

paths is the origin of enhanced anisotropy of the effective

conductance.

Next, we go on to the vertical component of the ac

complex admittance tensor, Yv ¼ jYvj expðjUvÞ: Figure 5a–c

shows the frequency characteristics of the magnitude |Yv| at

p = 0.4, 0.5, and 0.6, for several ratios of the bond occu-

pation probability. It should be mentioned that the vertical

component takes values of Yv(1, ph, RCx) = 1 and

Yv(0, ph, RCx) = jx RC, irrespective of values of ph.

Hence, the magnitude of the vertical component takes a

constant value of 1 at pv = 1 and does xRC at pv = 0. All

the values of |Yv| for intermediate cases of 0 \ pv \ 1 are

bounded between these two limiting lines. In the frequency

range of xRC \ 1, the magnitude of the vertical compo-

nent increases as the ratio of pv to ph increases. We also

observe that |Yv| has a value of unity at xRC = 1 irre-

spective of both p and the anisotropy pv/ph, as predicted by

Eq. 7. Both the reciprocal and the dual relations of Eqs. 7,

8 are also satisfied in Fig. 5a–c. The corresponding fre-

quency characteristics of the argument Uv are shown at

p = 0.4, 0.5, and 0.6 in Fig. 5d–f, respectively. Figure 5d–f

satisfy both the reciprocal and the dual relations of Eqs. 7,

8. In the metallic region of p = 0.6, the complex admit-

tance takes the same phase with the voltage applied in both

high and low frequencies. Thus, inphase current flows in

the circuit and the circuit shows resistance characteristics.

On the other hand, in the insulating region of p = 0.4, the

phase of the complex admittance shifts to p/2 from the

voltage phase in both high and low frequencies; thus, the

current that flows into the circuit is a p/2 shifted current.

The circuit, then, shows capacitance characteristics. In the

isotropic case, the argument is p/4 at the percolation

threshold, and is always less than p /4 in the metallic region

and greater than p/4 in the insulating region, taking the

maximum or minimum at the frequency of xRC = 1 [25].

Mixing between resistance characteristics and capacitance

characteristics maximizes at the frequency of x RC = 1,

i.e., inverse of the relaxation time, in the isotropic case.

The admittance argument is very sensitive to the anisotropy

pv/ph in the frequency range of 0.01 \ xRC \ 100, as

shown in Fig. 5. In the anisotropic case, the argument in

the metallic region can exceed p/4 for pv \ ph and that in

the insulating region be reduced less than p/4 for pv [ ph.

At the percolation threshold, the argument becomes larger

than p/4 for pv \ ph and smaller than p/4 for pv [ ph.

RC
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Fig. 3 The vertical effective conductance, rv
eff(pv, 1, xRC), versus

pv at xRC = 0, 0.01, 0.1, and 1, in the case of ph = 1. Two relations,

rv
eff = pv and rv

eff = 1.8pv
2.13, are drawn by a thin and a thick solid

line, respectively

Fig. 4 Current intensity distribution in the linear gray scale at

p = 0.53 for a pv = 0.212 and ph = 0.848 and b pv = 0.848 and

ph = 0.212. Here, the current greater than the threshold was drawn by

the most black line to clarify the current path
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Figure 6a–c shows the frequency characteristics of the

vertical component of the ac effective conductance at

p = 0.4, 0.5, and 0.6, for several ratios of the bond occu-

pation probability. When p is 0.5 at the percolation

threshold in Fig. 6b, the effective conductance is given by

x0.5 in the isotropic case [25]. As the ratio pv/ph increases,

the effective conductance is increased in the frequency

region of xRC \ 1 and the frequency dependence can be

described as ax0.5 in the low frequency region. a increases

with increasing pv/ph as seen in Fig. 6b. As for the

insulating case of p = 0.4, the effective conductance

approaches to 0 in proportion to x2 for xRC �1 because

of the dual relation of Eq. 5. In the opposite metallic

condition of p = 0.6, the effective conductance comes to a

constant finite value in low frequencies. As the ratio pv/ph

increases, the effective conductance increase monotoni-

cally in the frequency range of xRC \ 1, since meander of

the microscopic current path is suppressed. On the other

hand, the frequency characteristics of the effective capac-

itance (dielectric constant) are shown in Fig. 6d–f. The
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effective capacitance is related to the effective conductance

through the relation of Eq. 3.

As for the conductance anisotropy c of the ac con-

ductance, the ratio of the vertical component at xRC = 1

to the horizontal one, c = rv
eff(pv, ph, 1)/rh

eff(pv, ph, 1), is

plotted at p = 0.4, 0.5, and 0.6 in Fig. 2. The ratio c is

approximately equal to c ’pv=ph; in contrast with the dc

conductance. In Fig. 3, we plot the vertical component of

the effective conductance in the extreme case of ph = 1,

rv
eff(pv, 1, xRC), at xRC = 1, 0.1, and 0.01. rv

eff(pv, 1, 1)

is nearly equal to pv and rv
eff(pv, 1, xRC) decreases with

decreasing xRC from 1. This implies that the microscopic
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Fig. 6 Frequency characteristics of the vertical component

rv
eff(pv, ph, xRC) of the ac effective conductance tensor at p = 0.4

(a), p = 0.5 (b), and p = 0.6 (c), and the vertical component

Cv
eff(pv, ph, xRC) of the ac effective capacitance tensor at p = 0.4

(d), p = 0.5 (e), and p = 0.6 (f). The adopted values of pv and ph are

written in (a), (b), and (c). The results of the effective medium theory

are plotted by a solid line for the anisotropic case and by a broken line
for the isotropic case

J Mater Sci (2010) 45:2843–2851 2849

123



current path changes with frequency from the approxi-

mately straight path in the vertical direction at xRC = 1

toward the tortuous path at the dc limit.

Discussion and conclusion

First, we will discuss the anisotropy of the ac conductance at

xRC = 1 in Fig. 2. The conductance of resistors and that of

capacitors have the same magnitude of unity at xRC = 1,

and the microscopic current flows mainly parallel to the

macroscopic current direction. Hence, the argument Uv at x
RC = 1 is approximated as, Uv’ arctanðp�1

v � 1Þ; irre-

spective of values of ph. In Fig. 7, this relation is plotted as a

function of pv with calculated values of Uv at xRC = 1

in Fig. 5. It is seen that their agreement is fairy good. On

the other hand, |Yv| = 1 at xRC = 1 and the vertical effec-

tive conductance is approximated as, reff
v ðpv; ph; 1Þ’

pv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

v þ ð1� pvÞ2
q

: Thus, the anisotropy can be approxi-

mated by the relation

reff
v ðpv; ph; 1Þ

reff
h ðpv; ph; 1Þ

¼
pv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

h þ ð1� phÞ2
q

ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

v þ ð1� pvÞ2
q : ð10Þ

The predicted anisotropy of the effective conductance at x
RC = 1 is plotted by a solid line in Fig. 2. It is seen that

Eq. 10 can explain fairly well the calculated behavior by a

transfer matrix method in a metallic region, although there

exists some discrepancy in the insulating region.

Second, we will discuss the anisotropy of the dc con-

ductance in Fig. 2. The vertical component of the dc con-

ductance can be given by the power law in the vicinity of

the percolation threshold in Fig. 1b as, reff
v ðpv; ph; 0Þ ’

bðpv=phÞðp� 0:5Þ1:28: Here, the coefficient b is assumed to

be a function of the bond occupation anisotropy. On the

other hand, the relation, reff
v ðpv; 1; 0Þ’ 1:8p2:13

v ; holds in

the vicinity of the percolation threshold in Fig. 3. Hence,

the function b can be determined as b(pv) = 1.8 9 21.28 9

pv
0.85 for pv� 1. Therefore, the anisotropy of the dc con-

ductance can be written in the vicinity of the percolation

threshold as

reff
v ðpv; ph; 0Þ

reff
h ðpv; ph; 0Þ

¼ pv

ph

� �1:70

: ð11Þ

The predicted anisotropy of the dc conductance is plotted

by a broken line in Fig. 2. The relation of Eq. 11 can

explain the calculated behavior in the vicinity of the per-

colation threshold.

Finally, we compare our numerical results on the ver-

tical component of the ac admittance with the effective

medium theory. The vertical component of the ac admit-

tance in the effective medium theory are also plotted in

Figs. 5, 6. The effective medium theory can reproduce well

the calculated results by the transfer matrix method in the

frequency range of 10-1 B xRC B 10. This means that the

effective medium theory works well when the conductance

of two components have a similar magnitude. However, the

effective medium theory cannot reproduce the percolative

nature. In the frequency range of xRC B 0.01, the effec-

tive medium theory always overestimates the effective

conductance in the metallic region and underestimates the

effective capacitance in the insulating region, as seen in

Fig. 6c, d. The discrepancy increases as pv decreases in the

metallic region, while it increases as pv increases in the

insulating region. The discrepancy is caused by increase of

meander in the microscopic current path. The degree of

meandering of the microscopic current path through

resistors increases as pv decreases in the metallic region,

while one through capacitors increases as pv increases for

the vertical macroscopic current in the insulating region.

Hence, the discrepancy with the effective medium theory is

enlarged as the anisotropy of the bond occupation proba-

bilities increases. To see more quantitatively, we plot the

effective capacitance for the insulating region in the linear

scale in Fig. 8. The effective medium theory always

underestimate the effective capacitance in a frequency

range of xRC B 0.01 in the insulating region, compared to

the numerical result by a transfer matrix method. The

discrepancy increases as the average bond occupation
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probability p approaches the percolation threshold or as pv

is increased, as seen in Fig. 8.

In summary, we study the ac complex admittance tensor

(ac conductivity and dielectric constant) of an anisotropic

two-dimensional RC-network using a transfer matrix

method and reveal the dependence on the anisotropy of the

bond occupation probabilities. It is found that the dual

relation holds in each component of the complex admittance

tensor of the anisotropic two-dimensional RC-network, as

well as the scalar admittance in the isotropic RC-network.

For both the effective ac conductance in the metallic region

and the effective ac capacitance in the insulating region, the

anisotropy is most enhanced at the dc limit and suppressed

around xRC = 1. The anisotropy of the dc conductance is

given by a power law of the ratio of the bond occupation

probabilities in two directions in the vicinity of the

percolation threshold and is much more enhanced than

the anisotropy of the bond occupation probabilities. The

enhanced anisotropy at the dc limit is caused by meander of

the microscopic current path. The anisotropy of the ac

conductance at xRC = 1 is nearly equal to the anisotropy of

the bond occupation probability, owing to nearly straight

microscopic current path parallel to the macroscopic current

direction. The effective medium theory always overesti-

mates the effective conductance in the metallic region and

underestimates the effective capacitance in the insulating

region in the frequency range of xRC B 10-2 and the dis-

crepancy is increased with degree of meandering of the

microscopic current path.
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